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We consider two semiconductor lasers coupled face to face under the assumption that the delay time of the
injection is small. The model under consideration consists of two coupled rate equations, which approximate
the coupled Lang-Kobayashi system as the delay becomes small. We perform a detailed study of the synchro-
nized and antisynchronized solutions for the case of identical systems and compare results from two models:
with the delay and with instantaneous coupling. The bifurcation analysis of systems with detuning reveals that
self-pulsations appear via bifurcations of stationary(i.e., continuous wave) solutions. We discover the connec-
tion between stationary solutions in systems with detuning and synchronous(also antisynchronous) solutions
of coupled identical systems. We also identify a codimension 2 bifurcation point as an organizing center for the
emergence of chaotic behavior.
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I. INTRODUCTION

The goal of the present paper is to study nonlinear dynam-
ics of two mutually coupled semiconductor lasers. We con-
sider the face to face configuration, i.e., the output of each
laser is injected into the other laser. The study of such cou-
pling setup is motivated among other facts by the perspective
of using masked signal transmission[1,2] as well as investi-
gation of the dynamics of two-section laser devices[3]. In
addition to the application perspectives for the specific de-
vices, models for coupled lasers turn out to be sources for
new physical phenomena such as anticipated or lag synchro-
nization, and chaos appearance for already weak coupling
since the isolated lasers operate in a stable stationary regime.
From the general perspective of coupled nonlinear oscillators
[4], coupled semiconductor lasers usually are modeled by
coupled systems with additional symmetry properties which
have to be taken into account. Moreover, the significant dif-
ference between carrier and photon lifetimes brings multi-
scale properties into the models.

The dynamics of mutually coupled lasers with large injec-
tion feedback time(corresponding to distances from about
10 cm between the lasers) was studied recently in Ref.[5–7].
The case of unidirectional coupling was investigated in Ref.
[8,9]. Various new phenomena were reported such as re-
tarded or anticipated synchronization[10–13], inverse syn-
chronization[14], localized synchronization[6], and antisyn-
chronization of power drop outs[15].

Recently, there has been new interest in lasers with a short
cavity [16], which is motivated by several arguments: First,
the study of the dynamics in this regime has become experi-
mentally accessible. Also, such a regime is very interesting
from the dynamical point of view, since it has an intermedi-
ate complexity, allowing to analyze directly the mechanisms
of either synchronization or the appearance of pulsations and
chaotic dynamics. The same arguments seem to be applicable
when the delay in the coupling is small, i.e., there is ashort
external cavity. For instance, this is the case in a two-section
integrated device[3], where both lasers are parts of the same
device and are close to each othera priori. The instantaneous
coupling limit may serve as an appropriate starting point for
the study of such systems. Of course, the smallness of the
delay, which allows one to neglect it, is a separate question.
When neglecting the delay in the amplitude terms, it turns
out to be important to take into account the propagation
phasew caused by the delay. In order to see this, we take the
optical frequencynop,1014Hz and the relaxation frequency
nr ,109 Hz. If, for example, the length of the external cavity
is 1 mm, then the propagation phase can be estimated asw
,10−332pnop/33108,103 while the phase change of the
slow amplitude will bewA,10−332pnr /33108,10−2 and
can be neglected. From the more general perspective it is still
an open problem of modeling: what kind of phenomena in
the coupled face to face lasers can be described at least quali-
tatively by instantaneously coupled rate equations?

It is the main purpose of the present paper to give a com-
prehensive description of the dynamical regimes arising in a
model of instantaneously coupled rate equations. For the
case of identical lasers, we provide analytical conditions for
the stability of synchronized and antisynchronized regimes,
where the injection phase shift is the key parameter to deter-
mine the dynamics. Similar calculations are compared for
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two models: the model with small delay and that with instan-
taneous coupling. Further, we consider the case when there is
a detuning between two lasers. It is shown how the injection
phase affects the existence and stability of continuous wave
solutions and of self-pulsations. It follows that one of the
organizing centers for chaotic dynamics is a codimension -2
zero-Hopf bifurcation point.

II. THE MODEL

The model, which is extensively used to describe the dy-
namics of mutually coupled single-mode lasers(cf. Refs.
[5,9,8,17]), is the system of coupled rate equations:

dE1

dt
= i d̄E1 +

1

2SG1sN1,uE1u2d −
1

tp1

DE1 + ke−iwE2st − t̄d,

dN1

dt
= I1 −

N1

tc1

− RefG1sN1,uE1u2dguE1u2,

s1d
dE2

dt
=

1

2SG2sN2,uE2u2d −
1

tp2

DE2 + ke−iwE1st − t̄d,

dN2

dt
= I2 −

N2

tc2

− RefG2sN2,uE2u2dguE2u2,

whereE1,2 andN1,2 denote the complex optical fields and the

carrier densities of the lasers, respectively. The termi d̄E1
accounts for the frequency detuning. ByI1,2 we denote the
pumping current, andG1,2sN1,2, uE1,2u2d is the complex gain
function. tp1,2

, and tc1,2
are photon and carrier lifetimes;k

and t characterize the injection rate and the injection delay
time, respectively. The coupling strengthk should be small
enough in order to perturb weakly the longitudinal reso-
nances of the system. We do not address this question quan-
titatively, since it can be resolved only using multi-mode
models as, for example, in Ref.[18], and may be device
specific.

In system(1), we introduce the following simplifications
and rescalings. First of all, we assume that all parameters for

both lasers are the same except the detuning parameterd̄.
Neglecting nonlinear gain saturation we linearize the com-
plex gain function as follows:

GsN,uEu2d −
1

tp
: = GNs1 + iadsN − N0d.

With the rescaling Enew=ÎGNtcE, Nnew= 1
2tpGNsN−N0d,

tnew= t /tp we obtain from Eq.(1),

E18 = idE1 + s1 + iadN1E1 + he−iwE2st − td,

N18 = «fJ − N1 − sN1 + nduE1u2g,

s2d
E28 = s1 + iadN2E2 + he−iwE1st − td,

N28 = «fJ − N2 − sN2 + nduE2u2g,

where we use the same notations for the new variables. The
differentiation is assumed to be made with respect to the new
time, and the parameters are

h = tpk, « = tp/tc, J = tpGNsItc − N0d/2,

t = t̄/tp, n = 0.5, d = d̄tp.

Note that k=r /tin, where r2 is the fraction of the power
injected from one laser to another andtin is the diode cavity
round-trip time (cf. Refs. [19,20]). Therefore h=rtp/tin.
Taking valuestin=8 ps andtp=2 ps as for InGaAsP long
wavelength laser diode(cf. Ref. [19]) we obtain thath
< r /4. This relation is useful to have in mind for physical
interpretation of the bifurcation diagrams and dynamical re-
gimes described in the paper.

In the caset=0, we obtain the coupled rate equations
with instantaneous coupling:

E18 = idE1 + s1 + iadN1E1 + he−iwE2,

N18 = «fJ − N1 − sN1 + nduE1u2g,

s3d
E28 = s1 + iadN2E2 + he−iwE1,

N28 = «fJ − N2 − sN2 + nduE2u2g.

System(3) is the main object of this study. In Sec. VII we
compare some of the obtained results with the model(2)
which includes small delay.

III. SYMMETRIES: SYNCHRONOUS AND
ANTISYNCHRONOUS SOLUTIONS

Let us first examine the model(3) without detuning, i.e.,
d=0, and note some properties due to inherent symmetries:

Ej8 = s1 + iadNjEj + he−iwE3−j ,

s4d
Nj8 = «fJ − Nj − sNj + nduEju2g, j = 1,2.

(1) Since the subsystems are identical, there is a symme-
try with respect to indices interchangesE1,N1,E2,N2d
→ sE2,N2,E1,N1d. This implies that the invariant subspace
of synchronous statesE1=E2 and N1=N2 is invariant with
respect to the flow corresponding to Eq.(4).

(2) The symmetry sE1,N1,E2,N2d→ s−E2,N2,−E1,N1d
implies the existence of the invariant subspace of antisyn-
chronous statesE1=−E2 andN1=N2.

(3) The following symmetry allows us to establish a one-
to-one correspondence between synchronous and antisyn-
chronous solutions. If(E1std ,N1std ,E2std ,N2std) is a solution
to (4) then(E1std ,N1std ,−E2std ,N2std) is also a solution pro-
vided w is replaced byw+p. In other words, the symmetry
transformation is of the form(E1std ,N1std ,E2std ,N2std ,w)
→ (E1std ,N1std ,−E2std ,N2std ,w+p). This implies that all an-
tisynchronous solutions and their properties can be obtained
from the corresponding synchronous solutions and their

YANCHUK, SCHNEIDER, AND RECKE PHYSICAL REVIEW E69, 056221(2004)

056221-2



properties, which have to be considered for the same param-
eter values except thatw is shifted byp.

Let us remark that the coupling, which is present in Eq.
(4), influences the dynamics in the synchronization and anti-
synchronization subspaces. This, in particular, makes our
situation different from the setup in Refs.[4,21].

The phase-shift invariance sE1,N1,E2,N2d
→ sE1e

ic ,N1,E2e
ic ,N2d is common to optical devices with-

out phase conjugation, and, in particular, to the system(2)
for any parameterd and h. This symmetry implies that for
suitable laser parameters there exist continuous wave(cw)
solutions, i.e., solutions of the typeEjstd=E0j

eivt ,Nj =N0j
s j

=1,2;vPRd. These solutions are also called “stationary,”
because they correspond to stationary intensity regimes.
Moreover, this symmetry implies that for suitable laser pa-
rameters there exist modulated wave(MW) solutions, i.e.,
solutions of the typeEjstd=E0j

stdeivt ,Nj =N0j
std with E0j

st
+Td=E0j

std and N0j
st+Td=N0j

std for all tPR s j =1,2;v ,T
PRd. These solutions are also called “periodic” or “self-
pulsations”, because they correspond to time-periodic inten-
sity regimes.

IV. SYNCHRONOUS cw SOLUTIONS AND THEIR
STABILITY

A. Dynamics in the synchronization subspace

After substitutingN1=N2= :N and E1=E2= :E into Eq.
(4), we obtain the following equations for the dynamics in
the synchronization subspace:

E8 = s1 + iadNE+ he−iwE,
s5d

N8 = «fJ − N − sN + nduEu2g.

A qualitative analysis of Eq.(5) with «.0 andn.0 yields
the following:

(a) For h cosw,−J the “off state”E=0, N=J is as-
ymptotically stable.

(b) For −J,h cosw,n, there exists a globally stable
cw solutionEstd=E0e

iv0t, Nstd=N0 with

v0 = − hsa cosw + sin wd, N0 = − h cosw,

E0 = sJ + h coswd/sn − h coswd.

Summarizing, let us note that for all physically relevant
parameter values, i.e.,J.0, «.0, 0,h,n=0.5, there ex-
ists a unique stable cw solution inside the subspace of syn-
chronous solutions. The same is true for the subspace of
antisynchronous solutions.

B. Transverse stability of the synchronous cw solutions

Since the synchronous cw solution is stable within the
synchronization subspace, its stability in the whole phase
space is determined by itstransversestability, i.e., the stabil-
ity with respect to perturbations transverse to the synchroni-
zation subspace. The analysis of the transverse stability of
synchronous cw solutions can be carried out by inspecting
the characteristic equation

xT
0sLd = fL2 + 4Lh cosw + 4h2gfL + «s1 + S0dg

+ 2«S0sn − h coswdfL + 2hscosw − a sin wdg

= 0, s6d

where

S0: =
J + h cosw

n − h cosw
.

This equation is derived in Appendix A. We shall note that
the roots ofxT

0sLd=0 determine only transverse stability of
the synchronous cw solutions, since the general characteris-
tic equation can be factorized into two equations one of
which corresponding to transverse directions and another to
the directions within the synchronization subspace, cf. Ap-
pendix A. Transverse pitchfork bifurcation takes place if
there is a zero eigenvalue, i.e.,xT

0s0d=0, and transverse Hopf
bifurcation corresponds to the existence of pure imaginary
eigenvalues, i.e.,xT

0siVd=0, whereVÞ0 is some real pa-
rameter. These bifurcations can be identified and path fol-
lowed with respect to the system parameters. Here we choose
the coupling strengthh and injection phasew to be the key
parameters with respect to which we want to study the dy-
namics. Typical bifurcation diagram is shown in Fig. 1. The
figure shows regions for transverse stability of the synchro-
nous cw solution(marked by S) and antisynchronous cw
solution (marked by A), respectively. Note that in order to
obtain the result for antisynchronous solutions, we used the
symmetry arguments of Sec. III, i.e., the region A is an image
of the region S, which is shifted byp along the parameter
axis w. The transverse bifurcations that mediate the loss of
synchronization are marked as P for pitchfork and H for
Hopf, respectively. Note that we do not show in Fig. 1 all the
bifurcation lines, but only those which mediate the stability
loss of cw solutions.

There are also small regions where stable synchronous
and stable antisynchronous cw solutions coexist. They are
located atw=arctans1/ad and w=arctans1/ad+p and their
size is of order«, cf. Fig. 2.

The bifurcation diagrams, cf. Figs. 1 and 2, also reveal
that the first destabilization threshold, i.e., destabilization of

FIG. 1. Region of transverse stability for synchronous S and
antisynchronous A cw solutions, respectively. P denotes the curves
of transverse pitchfork bifurcations and H Hopf bifurcations for the
parametersa=2, J=1, «=0.03.
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the cw solutions with increasing of the couplingh for fixed
w, may occur already for coupling strength of order« via
Hopf bifurcation.

V. ASYNCHRONOUS cw SOLUTIONS

Synchronous and antisynchronous cw solutions are not
the only possible stationary solutions in the system(4). An-
other set of cw solutions, which we callasynchronous, can
be obtained from the following ansatz:

E1std = a1e
isvt+cd, N1std = N1 = const,

s7d
E2std = a2e

ivt, N2std = N2 = const,

wherea1,a2,N1,N2,v ,c are real constants to be determined.
After substituting it into Eq.(4), we obtain a set of nonlinear
equations, which afterward can be effectively studied nu-
merically. We refer the reader to Appendix B for details. As
a result we present the one-dimensional bifurcation diagram
in Fig. 3, which corresponds to the parameters as in Fig. 1
but with fixed h=0.2 (cf. horizontal line in the figure). In
addition to the synchronous and antisynchronous solutions,
we observe branches of unstable asynchronous orbits con-
necting synchronous and antisynchronous cw solutions.
These branches emerge from the subcritical pitchfork bifur-
cationsPs andPa, respectively. Although these solutions are
unstable their role may be important in forming the boundary
of the attracting region of stable synchronous cw solutions.

In the following section, we study system(3) for dÞ0,
i.e., we investigate the influence of the detuning.

VI. INFLUENCE OF THE DETUNING

A. Preliminary study

Since system(3) has the phase-shift invariance property,
we can reduce it to a five-dimensional system. One way of

reducing is to use the following transformation:E1std
=a1stdeic1std, E2std=a2stdeic2std. Herea1

2 anda2
2 are intensities

of the first and the second laser, respectively. We assume
a1Þ0 anda2Þ0. Dc=c1−c2 is their phase difference. Then
with respect to the new real variablesa1,a2,N1,N2, andDc
we obtain the system of equations

a18 = N1a1 + ha2cossDc + wd,

N18 = «fJ − N1 − sN1 + nda1
2g,

a28 = N2a2 + ha1cossw − Dcd, s8d

N28 = «fJ − N2 − sN2 + nda2
2g,

Dc8 = d + sN1 − N2da − h
a2

a1
sinsDc + wd + h

a1

a2
sinsw − Dcd.

System(8) no longer possess the phase-shift symmetry, and,
therefore, all cw solutions become stationary states and all
MW solutions become periodic(if Dc is considered modulo
2p) in terms of new variables.

Let us introduce the frequenciesV1 andV2 by

V1std = c18std, V2std = c28std.

The following quantity is often used to determine the locking
between two weakly coupled oscillators:

DV̄ = kDc8stdl = lim
T→`

1

T
E

0

T

Dc8stddt = lim
T→`

DcsTd
T

.

DV̄ can be treated as averaged frequency difference between
two weakly coupled lasers.

Figure 4 shows results of computation ofDV̄ depending
on the detuningd. Three different curves were obtained for
different values ofw with fixed h=0.3. At each point, we
integrated over the transient intervalTtr=1000 and averaged
over Tav=1000. Initial conditions were chosen at random.

FIG. 2. Zoom of the small part of Fig. 1. The regions of stability
of synchronous and antisynchronous cw solutions are overlapped,
creating multistability. Here the bifurcation curves are shown com-
pletely, i.e., not only those parts that bounds the stability regions of
the corresponding cw solutions.

FIG. 3. For fixedh=0.2, there are two branches corresponding
to the synchronous and antisynchronous solutions and the connect-
ing branches of unstable asynchronous unstable periodic solutions.
Pa and Ps are pitchfork andHa, Hs are Hopf bifurcations. Index s
stands for the synchronous and a for antisynchronous solutions,
respectively.
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One clearly observes the locking intervalsDV̄=0 as plataues
near d=0. Moreover, the width of these intervals strongly
depend on the phase parameterw. We will inspect the depen-
dence of the locking onw in more details in the following
sections by studying bifurcations that are involved in the loss
of locking and appearance of pulsations. Additionally, we

have to note that the use of frequency differenceDV̄ for
investigating of the locking between two coupled oscillators
can be justified in the case of weak coupling, i.e., small
enoughh. Therefore, we have to consider Fig. 4 as a pre-
liminary result, which has to be accompanied by an addi-
tional bifurcation analysis in the following sections.

B. Stationary states for the case with detuning

The cw solutions of system(3) are equilibria of system
(8). Hence, one can use the standard path-following tech-
nique to follow their dependence on the parameters. As start-
ing data, we use the known stationary states for the symmet-
ric system(see Fig. 3). The resulting bifurcation diagram is
shown in Fig. 5, which is computed for the detuningd=0.1.
Before analyzing the obtained bifurcation diagrams, it is im-
portant to realize that detuning breaks two symmetries in our
system (cf. Sec. III): Z2 symmetry sE1,N1,E2,N2d
→ sE2,N2,E1,N1d and the symmetry sE1,N1,E2,N2d
→ s−E2,N2,−E1,N1d. Therefore, exactly synchronous and
exactly antisynchronous solutions do not exist anymore.
Moreover, the pitchfork bifurcations that partially determine
the synchronization region of the system without detuning is
no longer admissible fordÞ0. Two questions arise naturally:
What happens with the synchronous and antisynchronous so-
lutions after the symmetry breaking by detuning? How is the
pitchfork bifurcation perturbed in this case? The observed
scenario, cf. Fig. 5, clarifies the situation. In particular, as
can be seen from Fig. 5(b), instead of the pitchfork bifurca-
tion we have a saddle-node bifurcation(denoted as “LP”). In
the nonsymmetric case this saddle-node bifurcation connects
the previously synchronous solutions via the unstable branch
of asynchronous solutions to the antisynchronous, cf. Fig.
5(a). Note that such a perturbation of the pitchfork bifurca-
tion is common for symmetrically coupled systems with a
parameter mismatch[22]. As a result, instead of the separate
branches of synchronous and antisynchronous solutions, for
dÞ0 there are closed branches of solutions, which do not

possess these symmetry properties. Nevertheless, as we shall
see in Sec. VI D, some parts of these branches still keep
being close to the synchronous state and some to the antisyn-
chronous.

Comparing the bifurcation diagram in Fig. 5 and its sym-
metric counterpart in Fig. 3 we note that similar stability
regions for stationary states, which are limited by the Hopf
(H) and saddle-node(LP) bifurcations, exist in both cases. In
fact, they can be obtained from each other by continuation
along the parameterd. Moreover, as we will see in Sec.
VI D, the corresponding branches are close to the synchro-
nous (those that containw=0) and to the antisynchronous
one(containingw= ±1). It is evident that for these stationary
states correspond toDcstd=const. In the following, by the
locking between coupled systems with detuning(3) we un-
derstand the existence of the stable stationary states, i.e., CW
solutions(for them we haveDc=const).

C. Regions of locking

The only parameter in our model, which induces mis-
match between the lasers is the detuningd. In order to study
the influence ofd on stable frequency-locked states, we in-
vestigate the boundaries of the stability region, i.e., the bi-
furcation points LP and H in Fig. 5(a), depending ond. The
resulting bifurcation diagram is shown in Fig. 6. There we
denote byDs and Da two regions, corresponding to the ex-
istence of stable stationary states. We distinguish between
these two regions because the first one is connected to the
synchronous stationary states and the second one to the an-
tisynchronous atd=0. For more details about these states we
refer to the following section. The Hopf bifurcation line is
marked by black color and the saddle-node bifurcation by
gray.

FIG. 4. Averaged frequency difference vs detuning parameter
for different values ofw (h=0.3).

FIG. 5. (a) Stationary states for system(3) with detuning.d
=0.01,h=0.2. Stable branches are depicted by solid lines, unstable
by dashed.(b) Perturbation of the pitchfork bifurcation by the de-
tuning, zooming of some part of(a).
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Note that the diagram in Fig. 6 is obtained for fixed cou-
pling strengthh. Another way of representation is to con-
sider detuningd and coupling strengthh as the active param-
eters. Figure 7 shows such bifurcation diagrams for fixed
values ofw. The different values ofw correspond to qualita-
tively different bifurcation diagrams. The regions of stability
of cw solutions are marked by gray color. As it is expected,
for sufficiently small couplingh in Figs. 7(a)–7(c), the sta-
bility region is bounded by saddle-node bifurcation lines. For
w=−0.84 andw=1.41, in addition to saddle-node bifurcation
mechanism, Hopf bifurcation lines appear to confine par-
tially the locking regions. The codimension-2 bifurcation
points (ZH) appear where Hopf and saddle-node bifurcation
lines meet.

The symmetry of the bifurcation diagrams in Figs. 6 and 7
with respect to interchanged→−d can be explained by the
fact that system(3) is invariant under the following transfor-
mation sE1,E2,N1,N2,dd→ sE2e

idt ,E1e
idt ,N2,N1,−dd.

D. Properties of the stationary states after the symmetry
breaking

By definition, cw solutions have the form

E1std = a1e
isvt+Dcd, E2std = a2e

ivt,

N1std = N1 = const, N2std = N2 = const.

Now we show that their particular shape, i.e., the values of
a1,a2,Dc, is influenced by the symmetry that is broken by
the detuningd. Particularly, in the regionDs (see Fig. 6) we
have stationary solutions that are close in some sense to syn-
chronous and in the regionDa close to antisynchronous
states. This becomes clear when one notes that the regionDs
contains the set of synchronous states whend=0 and Da
contains antisynchronous states. In other words, asd→0 the
stable locked solutions from the regionDs continuously ap-
proach the synchronous cw states and fromDa the antisyn-
chronous, respectively. For the synchronous solutions one
hasa1/a2=1 andDc=0 and antisynchronousa1/a2=1 and
Dc= ±p. As an example, we plot in Fig. 8 the ratio of am-

plitudesa1/a2 and a phase shiftDc as a function ofw for
d=0.2, i.e., parameters belong toDs.

E. Self-pulsations

Self-pulsations, i.e., periodic oscillations of the field in-
tensity, appear as a result of the Hopf bifurcation of the sta-
tionary locked states. In terms of the original system(3) they
are invariant tori, while for system(9) these solutions be-
come either a periodic solutions, or rotations, which are pe-
riodic with respect to the variablesa1,a2,N1,N2 but with
unbounded variableDc such that Dcst+Td=Dcstd+2kp
with some integerk. Such solutions can be studied either

FIG. 7. Bifurcation diagrams with respect to coupling strengthh
and detuningd for fixed w=0 (a), w=0.5 (b), w=−0.84, w=1.41.
Hopf bifurcations H are denoted by thin lines and saddle-nodes LP
by more heavy lines. Stability regions for stationary states are
marked in gray. ZH are zero-Hopf(or Guckenheimer-Gavrilov) bi-
furcation points of codimension 2.

FIG. 8. Characteristics of some locked solutions from the region
Ds of Fig. 6.

FIG. 6. Stability regions for the stationary states of coupled
systems with detuning. LP and H denotes saddle-node and Hopf
bifurcations, respectively. ZH is a codimension-2 zero-Hopf(or
Guckenheimer-Gavrilov) bifurcation point. PD—period-doubling
bifurcation curve for rotations of Eq.(8).
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directly byAUTO continuation software[23] or can be treated
as bounded limit cycles after appropriate coordinate transfor-
mation, which allows us to considerDc modulo 2p. Both
approaches allow one to make bifurcation analysis of such
solutions. In this way we detected a period-doubling bifurca-
tion, which, together with a Hopf bifurcation of the station-
ary solutions, restrict the region where stable self-pulsations
occur, cf. Fig. 6.

We have noticed that near the period-doubling bifurcation
self-pulsations appear, which are close to the diagonal in the
spacesa1,a2d, cf. Fig. 9, orbit A. Such pulsations appear
when there is no phase shift between the amplitudesa1 and
a2 of the lasers, cf. Fig. 9(a). On the contrary, near the Hopf
bifurcation, we observe that self-pulsations are close to the
“antidiagonal.” Such a phenomenon was reported in Ref.
[14] and called “inverse synchronization.” In this case,a1 is
shifted with respect toa2 by a half of the period, cf. Fig. 9(c).
The orbitB in Fig. 9 corresponds to the intermediate regime.
In the following two sections we consider these phenomena
in more detail and show that the phase propagation param-
eter w determines the possibility to observe identical or in-
verse amplitude synchronization.

F. Identical amplitude synchronization

It is a remarkable fact that coupled systems with detuning
(8) still admit solutions for which the amplitudes behave
identically, i.e., a1=a2. An example of such a solution is
shown in Fig. 9(a). The necessary condition for the existence

of such solutions isw=0. In this case, substitutingN: =N1
=N2 anda: =a1=a2 into Eq. (8) we obtain

a8 = Na+ ha cosDc, s9d

N8 = «fJ − N − sN + nda2g, s10d

Dc8 = d − 2h sin Dc. s11d

The phase differenceDcstd can be explicitly found from Eq.
(11). Namely, we have

Dc = 2 arctanF2h

d
− tanhS t

2
Î4h2 − d2DÎS2h

d
D2

− 1G
s12d

for d,2h and

Dc = 2arctanF2h

d
+ tanS t

2
Îd2 − 4h2DÎ1 −S2h

d
D2G

s13d

for d.2h. Solution (13) corresponds to a relatively small
detuning. In this case,Dc converges to the constant value
Dc→Dc0=2 arctanf2h /d−Îs2h /dd2−1g with t→` and
system settles on a stable cw solution(cf. also Fig. 6 with
w=0). When the detuningd becomes larger 2h, then Dc
behaves periodically (13) with the frequency vsyn

=Îd2−4h2. In this case, Eqs.(9) and (10) may be regarded
as periodically forced system, which has a stable fixed point
in the absence of forcing ath=0. Thus, we generally expect
[24] that self-pulsations occur in Eqs.(9)–(11) with the same
frequencyvsyn. Note that their period tends to infinity asd
→2h.

To summarize, there exists forw=0 a set of amplitude-
synchronous periodic solutions ford.2h. We believe that
approximate chaotic synchronization of intensities occurs as
a result of further bifurcations of these solutions whenw is
close to 0. As we will see in Sec. VI H there is a complicated
dynamical mechanisms leading to the destabilization of self-
pulsations. An example of such chaotic motion is shown in
Fig. 10.

FIG. 9. Different types of self-pulsations.(a), (b), and(c) show
time dependence of the amplitudesa1 and a2 of both lasers. The
corresponding parameter values:d=0.7, w=0 (a), w=p /4 (b), and
w=p /2 (c).

FIG. 10. Nearly amplitude-synchronous state forw=0.01p, d
=0.6.
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G. Inverse amplitude synchronization

When the propagation phasew is close top /2, we nu-
merically observe solutions for whicha1 anda1 behaves an-
tiphase, cf. Fig. 9(c). Such a phenomenon was reported also
in Ref. [14] and called inverse synchronization. To start with,
let us substitutew=p /2 into Eq.(8). We obtain the following
system:

a18 = N1a1 − ha2 sin Dc,

N18 = «fJ − N1 − sN1 + nda1
2g,

a28 = N2a2 + ha1sin Dc, s14d

N28 = «fJ − N2 − sN2 + nda2
2g,

Dc8 = d + sN1 − N2da + hSa1

a2
−

a2

a1
DcosDc,

which again can be considered as a perturbed uncoupled sys-
tem with coupling parameterh acting as a perturbation pa-
rameter. The unperturbed system(i.e., h=0) has an asymp-

totically stable fixed pointN̂1=N̂2=0, â1= â2=ÎJ/n. The
perturbation termhsa2sin Dc ,0 ,a1sin Dc ,0dT is tangent to
the arcN1=C, N2=C, a1

2+a2
2=R2 with some fixedR andC.

We numerically observe that the resulting oscillations are
close to the arc withR=ÎJ/n, and C=0, i.e., they appear

around the pointâi ,N̂i, cf. Fig. 11. Note that the setN1=N2
=0, a1

2+a2
2=J/n is not invariant for Eq.(14) with nonzero«.

Thus, we have observed that for two distinct casesw=0
and w=p /2 the coupling terms naturally appear in the dy-
namical equations(9)–(11) and (14) in such a way that for
w=0 they act along the diagonala1=a2 and result in the
appearance of amplitude-synchronous solutions. Forw
=p /2 the coupling term in Eq.(14) acts transversely to the
diagonal and tangentially to the arca1

2+a2
2=R2 and results in

the appearance of the antiphase solutions.

H. Appearance of chaotic oscillations near zero-Hopf
bifurcation point

In the vicinity of the zero-Hopf bifurcation point, cf. Fig.
12, there is a branch of Neimark-Sacker bifurcations emerg-
ing from ZH point (see general case in Ref.[25]). When
crossing this curve from above, the stable limit cycle under-
goes Neimark-Sacker bifurcation. It is a general observation
(cf. Ref. [25], p. 302) that the torus created by the Neimark-
Sacker bifurcation exists only for parameter values near the
corresponding bifurcation curve. If one moves away from the
curve, the torus losses its smoothness and will be destroyed.
The complete sequence of events is likely to involve an in-
finite number of bifurcations, since any weak resonance
point on the Neimark-Sacker curve is the root of an Arnold
phase-locking tongue. In view of this fact, we did not try to
resolve the bifurcations numerically below the curve T in
Fig. 12. Instead, for randomly chosen initial conditions, we
calculated Lyapunov exponents for different parameter val-
ues. Figure 13 shows the parameter values for which the
largest Lyapunov exponent is positive, i.e., the complex dy-
namics is present. We can see that, in particular, such region
comes arbitrary close(with the given precision) to ZH point.

VII. THE CASE OF A SMALL DELAY

In this section we discuss some properties of the symmet-
ric system with small delay,

FIG. 11. “Inverse synchronization” forw=p /2. The solutions
are located near the arca1

2+a2
2=J/n. Other parameters areh=0.3,

J=1, «=0.03,a=2.

FIG. 12. Neighborhood of the zero-Hopf bifurcation. T denotes
the Neimark-Sacker bifurcation curve emerging from the zero-Hopf
point.

FIG. 13. Parameter values for which an attractor with positive
largest Lyapunov exponent exists.
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Ej8std = s1 + iadNjstdEjstd + he−iwE3−jst − td,

s15d
Nj8std = «fJ − Njstd − hNjstd + njuEjstdu2g, j = 1,2,

and compare them with the corresponding properties of the
instantaneously coupled system(4). The zero-delay approxi-
mation (4) would give a correct representation for the dy-
namics of delayed system(15), provided that the delay “is
small enough.” Mathematically, it can be regarded as exis-
tence of the stable finite-dimensional invariant manifold in
the phase space of Eq.(15) for small enought such that the
dynamics on this manifold is described by the system of
ordinary differential equations(4) (cf. Ref. [26]). This im-
plies that self-pulsations as well as more complicated dy-
namical regimes(bounded chaotic attractors) that have been
discovered in Eq.(4) have their counterparts in Eq.(15). The
main problem-specific question is then for which values oft
system(4) approximates reasonably(15). In this section, we
give some partial answer to this problem concerning cw so-
lutions.

The dynamics of Eq.(15) within the synchronization sub-
spaceE1=E2: =E, N1=N2: =N is governed by the Lang-
Kobayashi equation[17]

E8 = s1 + iadNE+ he−iwEst − td,
s16d

N8 = «fJ − N − sN + nduEu2g.

The parameters of the synchronous cw solutionsEstd
=aeivt ,Nstd=N=const of Eq.(16) satisfy the following set of
equations(cf. Refs.[27,28]):

N = − h cossw + vtd,

v − aN = − h sinsw + vtd, s17d

a2 = sJ − Nd/sN + nd.

One can obtain sufficient conditions for system(16) to have
only one external cavity mode, i.e., a unique solution of Eq.
(17). For this, we shall write the equation forv as

v = − hfa cossw + vtd + sinsw + vtdg. s18d

The saddle-node bifurcation, which gives rise to additional
external cavity modes, can be identified(cf. Ref. [27]) as a
double root of Eq.(18). Hence, differentiating it with respect
to v, we obtain

1 = thfa sinsw + vtd − cossw + vtdg.

It is clear that the condition

th ,
1

Î1 + a2
s19d

guarantees that a double root does not exist. Hence, the in-
equality (19) roughly provides the limit within which one
might expect that the delayt does not qualitatively change
the dynamics within the synchronization(antisynchroniza-
tion) subspace.

The transverse stability of the unique synchronous cw so-
lution is determined by the solutions of the characteristic
equation

xT
tsLd = fL2 + 2h cosuse−Lt + 1dL + h2se−Lt + 1d2g

3fL + «s1 + Sdg + 2«Ssn − h cosud

3fL + hscosu − a sin udse−Lt + 1dg = 0, s20d

where

S: =
J + h cosu

n − h cosu

and

u: = vt + w.

The derivation is given in Appendix A. The condition
xT

ts0d=0 determines the pitchfork andxT
tsiVd=0 Hopf bifur-

cation, respectively. It turns out that for the values up tot
=2 the regions in thesw ,dd parameter plane for the trans-
verse stability of synchronous cw solution of Eq.(15) are
qualitatively the same as in the case of zero delay(4). In Fig.
14 we plot the curves which delineate this stability region.
All the remaining parameters are taken to be the same as in
Fig. 1. The effect of delay for this range oft can be only
seen by continuous changing of the slope of the curves.

VIII. DISCUSSION AND CONCLUSION

In this paper we studied a model for a single-mode lasers
which are optically coupled in a face to face configuration.
The external cavity length is assumed to be short. We have
derived conditions for the stability of synchronous cw solu-
tions in terms of the coupling parameters. As a result of
symmetry considerations, the properties of antisynchronous
solutions can be determined by those of the synchronous. We
have shown that when a detuning is present between two
lasers, there exist stable stationary states under some param-
eter constellations, which can also be considered as a phase-
locked states withDc=const. Moreover, the connection be-
tween these states and the synchronous solutions of the

FIG. 14. Boundaries of the region for transverse stability of
synchronous cw solutions of system(15) for different values of
delay (similarly as in Fig. 1 without delay). The corresponding
boundaries for antisynchronous cw solutions can be obtained by
shifting along thew axis byp.
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symmetric system(i.e., without detuning) is shown. We also
investigate the mechanisms of appearance of self-pulsations,
which are quasiperiodic solutions in terms of the original
system(3) and represent periodic solutions of the reduced
system(8). These mechanisms include Hopf bifurcation of
the stationary phase-locked states and period-doubling bifur-
cation. We have shown that one of the organizing centers of
chaotic pulsations in the considered system is a zero-Hopf
(or Guckenheimer-Gavrilov) codimension-2 bifurcation
point. From the point of view of modeling, we studied the
possibility to use the model(3) with instantaneous coupling
for the study of coupled semiconductor lasers with short ex-
ternal cavity.

In our analysis, we confined ourselves to the deterministic
model. The spontaneous emission may cause additional ef-
fects to appear such as noise-induced chaos[29], coherence-
resonance[30], or excitability[31]. We believe that there are
certain topological configurations in the phase space that im-
ply the existence of these effects. For example, one configu-
ration assumes an S-shaped slow manifold like in Fitz-Hugh-
Nagumo model, another[31] assumes that both separatrixes
of a saddle point tend to an attractor, which is located nearby.
In many cases, the necessary condition for the excitability is
closeness to some bifurcation point or existence of a compli-
cated topological structure in the phase space. Thus we may
roughly anticipate that near the bifurcation lines and, espe-
cially, near the zero-Hopf bifurcation point, there is a rich
potential for the necessary topological configurations to oc-
cur. We hope that the presented analysis will help one to
localize such parameter regions.
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APPENDIX A: DERIVATION OF THE CHARACTERISTIC
EQUATIONS FOR SYNCHRONOUS SOLUTIONS

The algorithm for the derivation of the characteristic
equations for the synchronous cw solutions of systems(15)
and(4) is the same, therefore, we present here the derivation
in detail for the delayed system(15). Finally, the character-
istic equation for Eq.(4) will be obtained by settingt=0.

Let E1=E2: =Ese
ivst, N1=N2: =Ns be the synchronous cw

solutions under consideration. ByF1,2=sE1±E2d /2e−ivst and
M1,2=sN1±N2d /2 we introduce new coordinates such that
Eq. (15) takes the form

Ḟ1,2std = s1 + iadfM1F1,2std + M2F2,1stdg

− ivsF1,2std ± he−isw+vstdF1,2st − td,

Ṁ1 = «fJ − M1 − sM1 + ndsuF1u2 + uF2u2d − M2sF1F̄2 + F̄1F2dg,

sA1d

Ṁ2 = «f− M2 − sM1 + ndsF1F̄2 + F̄1F2d − M2suF1u2 + uF2u2dg.

F1 and M1 are the coordinates within the synchronization
subspace, while the coordinatesF2 andM2 are transversal to
it [4,21], i.e., we haveF2=0,M2=0 for synchronized solu-
tions.

System(A1) is again autonomous due to the phase-shift
invariance of the original system(15), and cw solution under
consideration is transformed into the equilibriumF1=Es,
M1=Ns, F2=0, M2=0 with respect to it. We will linearize
(A1) in the vicinity of such point[32]. To perform this, we
first decompose

F1,2= x1,2+ iy1,2.

Denoting with

vW: = sv1, . . . ,v6d

variations inx1,y1,M1,x2,y2,M2, respectively, we obtain a
linearization of the form

d

dt
vWstd = AvWstd + BvWst − td,

with the 636 matricesA andB having the block structure,

A = SA1 A2

A2 A1
D, B = SB1 0

0 − B1
D . sA2d

At a synchronized state, we havex2=y2=M2=0 and M1
=N1,2= :N, and obtain

A1 = 1 N vs − aN x1 − ay1

− svs − aNd N ax1 + y1

− 2«x1sN + nd − 2«y1sN + nd − «s1 + x1
2 + y1

2d
2 ,

sA3d

B1 = 1 h cossw + vstd h sinsw + vstd 0

− h sinsw + vstd h cossw + vstd 0

0 0 0
2 . sA4d

The coupling terms inA2 disappear for synchronized cw
states and the system splits into two invariant subspaces,
corresponding tosynchronizedand transverse variations. As
a consequence, the characteristic function can be factorized
asxtsLd=xL

tsLdxT
tsLd with

xL
tsLd = detsL I − A1 − e−LtB1d sA5d

and

xT
tsLd = detsL I − A1 + e−LtB1d. sA6d

Here I is identical 333 matrix. The functionxL
t is the char-

acteristic function of the Lang-Kobayashi system(16) and
has been investigated in Ref.[27]. It determines the stability
properties of the synchronous cw solution of coupled system
(2). The functionxT

t determines its transverse stability prop-
erties. Taking into account equations(17), we can rewrite
transverse characteristic equations in terms of the parameters
in the form (20).
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Similarly, the characteristic equations for the transverse
stability of synchronous solution to Eq.(4) have the form
(6).

APPENDIX B: SET OF EQUATIONS FOR DETERMINING
ASYNCHRONOUS cw SOLUTIONS

Here we obtain a set of equations for determining asyn-
chronous cw solutions of Eq.(4). We also present an algo-
rithm of reducing it to a single nonlinear equation with one
unknown variablecP f0,2pg.

After substituting Eq.(7) into Eq. (3), we obtain the fol-
lowing set of equations with respect to unknowns
a1,a2,c ,v ,N1,N2:

a1iv = s1 + iadN1a1 + ha2e
−isc+wd,

a2iv = s1 + iadN2a2 + ha1e
isc−wd,

sB1d
J − N1 − sN1 + nda1

2 = 0,

J − N2 − sN2 + nda2
2 = 0.

In real form it reads

a1N1 + a2h cossw + cd = 0, sB2d

a1saN1 − vd − a2h sinsw + cd = 0, sB3d

a2N2 + a1h cossc − wd = 0, sB4d

a2saN2 − vd + a1h sinsc − wd = 0, sB5d

J − N1 − sN1 + nda1
2 = 0, sB6d

J − N2 − sN2 + nda2
2 = 0. sB7d

Sincea1Þ0, we may setx=a2/a1. In the following we per-
form a formal procedure without checking signs and zeros of
some functions, in order to avoid additional nonessential de-
tails. As a result some spurious roots for new equation will
appear which can be eliminated afterward. The system for
unknownsx,c ,v ,N1,N2 has the form

N1 + xh cossw + cd = 0, sB8d

saN1 − vd − xh sinsw + cd = 0, sB9d

xN2 + h cossc − wd = 0, sB10d

xsaN2 − vd + h sinsc − wd = 0, sB11d

sJ − N2dsN1 + nd
sJ − N1dsN2 + nd

= x2, sB12d

where Eq.(B12) is obtained from Eqs.(B6) and (B7). Now
we eliminate x from the following equations pairwise:
(B8),(B9); (B10),(B11); (B8),(B10); and (B8),(B12). As a
result we obtain equations for unknownsc ,v ,N1,N2,

N1 sinsw + cd + saN1 − vdcossw + cd = 0, sB13d

N2 sinsc − wd − saN2 − vdcossc − wd = 0, sB14d

N1N2 = h2cossw + cdcossc − wd, sB15d

sJ − N2dsN1 + nd
sJ − N1dsN2 + nd

=
N1

2

h2cos2sc + wd
. sB16d

N1,N2 can be determined using Eqs.(B13) and (B14):

N1 = v/fa + tansw + cdg, sB17d

N2 = v/fa + tansw − cdg. sB18d

After substituting Eqs.(B17) and (B18) into Eq. (B15), v
can be expressed as a function ofc:

v2 = h2cossw + cdcossw − cd 3 ftansw + cd + agftansw − cd

+ ag. sB19d

Final step is to substituteN1 andN2 from Eqs.(B17) and
(B18) into Eq. (B16):

fJftansw + cd + ag − vgfnftansw − cd + ag + vg
fJftansw − cd + ag − vgfnftansw + cd + ag + vg

=
h2

v2cos2sw + cdfa + tansw + cdg2. sB20d

After substituting Eq.(B19) into Eq. (B20), we arrive at a
nonlinear transcendental equation forc. This equation can be
treated numerically more easylly sincec is determined
within a bounded intervals0,2pd.
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